3.96 \(\int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=156 \[ -\frac{a^3 (9 A-4 B) \sin (c+d x)}{4 d \sqrt{a \cos (c+d x)+a}}+\frac{a^2 (7 A+4 B) \tan (c+d x) \sqrt{a \cos (c+d x)+a}}{4 d}+\frac{a^{5/2} (19 A+20 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 d}+\frac{a A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d} \]

[Out]

(a^(5/2)*(19*A + 20*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) - (a^3*(9*A - 4*B)*Sin[
c + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*(7*A + 4*B)*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (a*
A*(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.47386, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {2975, 2981, 2773, 206} \[ -\frac{a^3 (9 A-4 B) \sin (c+d x)}{4 d \sqrt{a \cos (c+d x)+a}}+\frac{a^2 (7 A+4 B) \tan (c+d x) \sqrt{a \cos (c+d x)+a}}{4 d}+\frac{a^{5/2} (19 A+20 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 d}+\frac{a A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a^(5/2)*(19*A + 20*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) - (a^3*(9*A - 4*B)*Sin[
c + d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*(7*A + 4*B)*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (a*
A*(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx &=\frac{a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int (a+a \cos (c+d x))^{3/2} \left (\frac{1}{2} a (7 A+4 B)-\frac{1}{2} a (A-4 B) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac{a^2 (7 A+4 B) \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int \sqrt{a+a \cos (c+d x)} \left (\frac{1}{4} a^2 (19 A+20 B)-\frac{1}{4} a^2 (9 A-4 B) \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=-\frac{a^3 (9 A-4 B) \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+4 B) \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{8} \left (a^2 (19 A+20 B)\right ) \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=-\frac{a^3 (9 A-4 B) \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+4 B) \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{\left (a^3 (19 A+20 B)\right ) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac{a^{5/2} (19 A+20 B) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{4 d}-\frac{a^3 (9 A-4 B) \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)}}+\frac{a^2 (7 A+4 B) \sqrt{a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.620257, size = 126, normalized size = 0.81 \[ \frac{a^2 \sec \left (\frac{1}{2} (c+d x)\right ) \sec ^2(c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right ) ((11 A+4 B) \cos (c+d x)+2 (A+2 B \cos (2 (c+d x))+2 B))+\sqrt{2} (19 A+20 B) \cos ^2(c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^3,x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(Sqrt[2]*(19*A + 20*B)*ArcTanh[Sqrt[2]*Sin[(c
+ d*x)/2]]*Cos[c + d*x]^2 + 2*((11*A + 4*B)*Cos[c + d*x] + 2*(A + 2*B + 2*B*Cos[2*(c + d*x)]))*Sin[(c + d*x)/2
]))/(8*d)

________________________________________________________________________________________

Maple [B]  time = 4.404, size = 1016, normalized size = 6.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x)

[Out]

1/2*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*((76*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^
(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+76*A*ln(4/(2*cos(1/2*d*x+1/2
*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+80*B*ln(-4/(
-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*
a))*a+80*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1
/2*d*x+1/2*c)+2*a))*a+64*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^4+(-76*A*ln(-4/(
-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*
a))*a-76*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1
/2*d*x+1/2*c)+2*a))*a-44*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-80*B*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^
(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-80*B*ln(4/(2*cos(1
/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-80
*B*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x+1/2*c)^2+19*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1
/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+19*A*ln(4/(2*cos(1/2
*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+26*A
*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+20*B*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a
*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+20*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^
(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+24*B*2^(1/2)*(a*sin(1/2*d*x+
1/2*c)^2)^(1/2)*a^(1/2))/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c)/
(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.02725, size = 522, normalized size = 3.35 \begin{align*} \frac{{\left ({\left (19 \, A + 20 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} +{\left (19 \, A + 20 \, B\right )} a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left (8 \, B a^{2} \cos \left (d x + c\right )^{2} +{\left (11 \, A + 4 \, B\right )} a^{2} \cos \left (d x + c\right ) + 2 \, A a^{2}\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \,{\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/16*(((19*A + 20*B)*a^2*cos(d*x + c)^3 + (19*A + 20*B)*a^2*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*
a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 +
 cos(d*x + c)^2)) + 4*(8*B*a^2*cos(d*x + c)^2 + (11*A + 4*B)*a^2*cos(d*x + c) + 2*A*a^2)*sqrt(a*cos(d*x + c) +
 a)*sin(d*x + c))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 3.12869, size = 686, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/8*(16*sqrt(2)*B*a^3*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + (19*A*a^(5/2) + 20*B*a^(5/2))*
log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - (19*A*a^
(5/2) + 20*B*a^(5/2))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqr
t(2) - 3))) + 4*sqrt(2)*(19*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^(7/2) +
12*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*a^(7/2) - 171*(sqrt(a)*tan(1/2*d*x
+ 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*a^(9/2) - 76*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2
*d*x + 1/2*c)^2 + a))^4*B*a^(9/2) + 89*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A
*a^(11/2) + 36*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(11/2) - 9*A*a^(13/2)
 - 4*B*a^(13/2))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d
*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^2)/d